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Abstract 
In this study, we employ a Monte Carlo simulation technique for estimating the probability of 
victory at any stage in the first or second innings of a one-day international (ODI) cricket 
match.  This model is then used to test market efficiency in the Betfair ‘in-play’ market for a 
large sample of ODI matches.  We find strong evidence of overreaction in the first innings.  
A trading strategy of betting on the batting team after the fall of a wicket produces a 
significant profit of 20%.  We also find some evidence of underreaction in the second 
innings, although it is less economically and statistically significant than the first innings 
overreaction.  We also implement trades when the discrepancy between the probability of 
victory implied by current market odds differs substantially from the odds estimated by our 
Monte Carlo simulation.  We document a number of trading strategies that yield large 
statistically significant positive returns in both the first and second innings.   
 
 
Keywords: in-play betting markets; Trading strategies; ODI Cricket; web-scraping; Monte 
Carlo simulation 
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1. Introduction  

According to Thaler and Ziemba (1988), betting markets provide an ideal setting in which to 

test market efficiency. Betting markets have a key advantage over stock exchanges – the 

uncertainty surrounding the outcome of a sporting wager is resolved at a well-defined 

termination point.  Moreover, the odds available on a sporting bet provide an unambiguous 

estimate of the market’s perceived probability of an event occurring.  If the market 

systematically misestimates these probabilities, then profitable trading strategies can be 

constructed.  To this end, we analyse the profitability of trading strategies in the setting of a 

cricket betting market – namely, the Betfair ‘in-play’ market relating to one-day international 

cricket (ODI).1   

There are a number of potential factors that influence a ODI cricket team’s expected 

score. The more resources a team has available, the more runs they are likely to score 

throughout the remainder of the innings.  The value of each of these resources on a team’s 

expected score is dependent on the quantity of the other resources available.  In this sense, 

any attempt to model or predict the outcome of a cricket innings must account for the 

interaction between the available resources. We develop a more sophisticated and more 

accurate approach to modelling these interactions than achieved in the previous literature.  

Accordingly, our model should have a higher likelihood of identifying exploitable mispricing.   

Brooker and Hogan (2011) create a model that includes variables for match conditions 

and run rate required (based on a sample of 310 games), but their model is restricted to the 

second innings only. Importantly, our model can estimate the probability of victory at any 

point throughout a cricket match. Further, we partition the innings into multiple segments and 

separately estimate the model coefficients for each, thereby capturing non-linearities in the 

                                                 
1 Due to the complicated nature of one-day international cricket, only rules central to this paper are explained. 
Refer to the Appendix, Section A1.   
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data.  Compared to Brooker and Hogan (2011), we condition on four additional variables: 

current run rate, current batter score and the career batting averages and strike rates of all 22 

players in the match which we argue will improve the predictive ability of the model.  

Because of the additional complexity associated with accounting for each individual player, 

our method is based on Monte Carlo simulation. Finally, we have a very large sample 

comprising 1,101 ODI matches and we utilise highly granular ball-by-ball data.  

There are considerable benefits of testing efficiency in an ‘in-play’ market compared 

with traditional studies of pre-match odds or financial markets.  In particular, ‘in-play’ sports 

betting markets are not affected by the problem of private information because once a match 

has begun, any new information about the state of the game is instantly observed by all. As 

such, we would expect changes in the odds to accurately and speedily reflect the market’s 

interpretation of the information arrival.  

Our out-of-sample dataset contains ball-by-ball scores and odds for 186 ODI matches, 

producing a total of 101,176 ‘news-events’.  Having detail at a ball-by-ball level means that 

we are able to place hypothetical wagers immediately after any ball is bowled as opposed to 

being restricted to betting at the conclusion of any given over.  Our model includes several 

variables that aim to capture the ability of each individual player.  Our study is therefore the 

first to test the efficiency of the ‘in-play’ market with a model that accounts for differences in 

team skill and the first to use ball-by-ball data. 

 Our key findings can be summarised as follows. We document strong evidence of 

overreaction in the first innings.  A trading strategy of betting on the batting team after the fall 

of a wicket results in a profit of 20.8% that is significant at the 1% level.  We also find some 

evidence of underreaction in the second innings although it is less economically and 

statistically significant than the first innings overreaction.  We also implement trades when 

the discrepancy between the probability of victory implied by current market odds differs 
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substantially from the odds estimated by our Monte Carlo simulation.  We document a 

number of trading strategies that yield large statistically significant positive returns in both the 

first and second innings. 

 The remainder of this paper organised as follows. In Section 2, we present a brief 

background and literature review. Section 3 then outlines the research method, while the 

results are presented and discussed in Section 4. Section 5 concludes. 

2. Background and Literature Review 

2.1 Cricket Literature 

Clarke (1988) presents one of the first attempts at modelling a team’s total score with a 

dynamic programming model. Simple in nature, it is based on the idea that the average run 

rate targeted by a team is inversely related to the probability of getting out.  Duckworth and 

Lewis (1998) developed a model for forecasting expected runs based on a two-factor 

relationship between wickets in hand and overs remaining.  Bailey and Clarke (2006) use a 

multiple linear regression model that incorporates variables such as experience, quality, form 

and home advantage.  Unlike Duckworth and Lewis (1998), this model only predicts the 

expected total score from the start of the innings.  Once the innings has begun, they adjust 

their predicted score based on the quantity of resources used according to the Duckworth and 

Lewis (1998) tables.2   

Swartz, Gill and Muthukumarana (2009) develop a model for predicting potential 

outcomes for each delivery. They use a single latent variable for determining both the runs 

and wickets process which assumes that the expected run rate is inversely related to the 
                                                 
2 Clarke (1988) also develops a dynamic programming model to determine the optimal scoring rate.  His analysis 
suggests that a good strategy is to score quickly at the beginning of the innings and slow down if wickets are 
lost.  A number of papers since then have used similar dynamic programming models (Johnston, Clarke and 
Noble, 1993; Preston and Thomas, 2000; Norman and Clarke, 2007, 2010; Brooker, 2009) and analysed optimal 
strategy (Preston and Thomas, 2000). Other aspects of cricket strategy that have been studied include the 
analysis of the optimal batting order to maximise expected runs (e.g. Ovens and Bukiet, 2006; Norman and 
Clarke, 2007, 2010). The general conclusion is that adjusting the batting order to suit the match conditions 
results in an increase in the probability of winning (on average). 
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probability of a wicket. This does not appear to fit well with reality, particularly in the later 

stages of an innings.  Brooker and Hogan (2011) use Bayes’ rule to estimate the impact of 

ground conditions on the distribution of first innings scores.     

2.2 Efficiency of Sports Betting Markets 

One of the most frequently analysed sports betting markets is horse racing.  The general 

consensus is that the racetrack market is very efficient – probabilities implied by the market 

odds match very closely to the true probabilities. However, several anomalies have been 

uncovered.  For example, one of the earliest documented is that punters systematically 

underestimate the chances of short-odds horses and overvalue those of long odds horses – the 

so-called, ‘favourite-longshot’ bias (Griffith, 1949; McGlothlin, 1956; Ali, 1977; Weitzman, 

1965; Snyder, 1978; Asch, Malkiel and Quandt, 1982; Ziemba and Hausch, 1987).   

The structure of the horse racing market differs from the cricket betting market in two 

key ways.  First, relatively high commissions are charged by the racetracks – e.g., Asch, 

Malkiel and Quandt (1982) report a commission of 18.5%. In our study, commissions are 

much less influential since the maximum charged by Betfair is 5%.  Second, anecdotal 

evidence about racetrack bettors being more concerned with having a fun day out at the track 

as opposed to being strictly rational expected utility maximisers, is much less likely to apply 

to our setting. We argue this because of the online nature of the exchange in which the 

majority of bets are placed by people who are not actually at the game.     

Tests of market efficiency and investor rationality have been conducted in many 

professional sports betting markets around the world. The spreads betting market in the 

National Football league (NFL) in the US has been shown to exhibit several biases.  For 

example, Golec and Tamarkin (1991) find that the market underestimates the home team 

advantage and has a bias against underdogs.  However, these biases have been shown to have 

diminished over time (Gray and Gray, 1997).  Dare and Holland (2004) believe that previous 
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models suffer from collinearity problems because the home team is twice as likely to be the 

favourite and these variables are therefore not independent as the model assumes.  Using a 

new specification that corrects for this bias, they report the renewal of a bias favouring bets 

on home underdogs.3 

2.3 Cricket Betting Markets 

There is a large volume of money wagered on most ODIs relative to other sports.  For 

example, Ryall and Bedford (2010) report that the average amount of money bet ‘in-play’ on 

an AFL match is $80,000, while blockbuster games such as the grand final can attract up to 

$140,000.  Notably, for the 186 out-of-sample ODIs in our study the average amount bet was 

over $8 million, with some games drawing in excess of $20 million. 

Bailey (2005) is the first to look for inefficiencies in the cricket betting market, 

analysing “head-to-head” match-ups in the 2003 World Cup.  A head-to-head match-up is an 

exotic bet where you have to predict which of two players you think will score more runs in 

the match.  Bailey’s (2005) models take into account many factors: batting position, 

experience, home country advantage, match time, innings sequence, opposition, performance, 

and form.  The most successful of the models achieved an ROI of 35%, suggesting that the 

head-to-head market may be inefficient.  Notably, the head-to-head market is a pre-match 

market – that is, bets are not made once the game has commenced – and so is not directly 

comparable to the ‘in-play’ analysis of our study. 

Using a ball-by-ball dataset of market odds for 15 ODI cricket matches, Easton and 

Uylangco (2006) analyse the changes in odds in response to the outcome of each ball bowled. 

From our perspective, their most interesting finding is the association between the outcome of 

a particular ball and the payoffs of the six preceding balls.  They suggest that this is evidence 
                                                 
3 The betting markets of many other international sports have been used for testing market efficiency including 
golf (Docherty and Easton, 2012); soccer (Demir, Danis and Rigoni, 2012); tennis (Forest and McHale, 2007); 
Australian Rugby League and Australian Football league (Brailsford, Gray, Easton and Gray, 1995) and Major 
League Baseball (Paul and Weinbach, 2008). 
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that the market has some ability to predict the outcome of future deliveries.  Overall this study 

is more of a description of how the in-play prices react to certain outcomes as opposed to a 

definitive test of market efficiency.  Absent a model for the probability of victory, they are 

silent on the question of mispricing.      

2.4 In-Play Betfair Market 

In-play markets, like Betfair, allow customers to bet on the outcome of a sporting event while 

it is in progress as opposed to a traditional market where you can only bet prior to the game 

commencing. Betfair operates in a similar way to a stock exchange. Opposing bets are 

matched anonymously by Betfair with a commission being charged on the winning bet (see 

the Appendix).4 The advantage of the stock exchange style business model from Betfair’s 

perspective is that they are not exposed to any risk with regard to the outcome of the games as 

a traditional bookmaker would. They allow punters to decide how much they are willing to 

bet and at what odds.5   

The Betfair interface shows users the odds that are currently available to ‘back’ or lay’ 

each team as well as the market depth for each selection (see Figure A1 in the Appendix). To 

illustrate the difference between a ‘back’ and ‘lay’ wager we provide, in Figure A2 of the 

Appendix an example of the payoffs to a variety of bets placed using the odds shown in 

Figure A1.  A lay bet is analogous to short selling in the stock market.  If a punter wants to 

bet on a particular team winning the game they can either place a back bet on that team or lay 

odds for the opposition.6 

                                                 
4 We assume for the purposes of our study that we have no Betfair points and thus pay the full commission rate.   
5 A traditional bookmaker determines the odds at which punters can bet and they adjust the odds in an attempt to 
‘balance their book’ which essentially involves having an even amount of money at stake on each result to 
ensure that they make a profit.  
6 If a punter places a $100 lay bet on a particular team, they receive the $100 stake upfront but must pay an 
amount equal to $100 multiplied by the agreed odds if that team wins.  So the potential loss can be greater than 
the original $100 stake. 
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Three key existing papers test the efficiency of in-play betting markets and they all use 

Betfair data. Ryall and Bedford (2010) analyse the in-play market for the 2009 AFL season. 

Docherty and Easton (2012) analyse the 2008 Ryder Cup Golf Tournament. Brown (2012) 

analyses the 2008 Wimbledon final between Roger Federer and Rafael Nadal.  

 

3. Research Design 

3.1 Hypotheses  

We test the betting markets version of weak efficiency suggested by Thaler and Ziemba 

(1988), namely, that ‘no bets should have positive expected values’ as opposed to the strong 

form which says that ‘all bets should have negative expected profits equal to the amount of 

commission’. De Bondt and Thaler (1985) document empirical evidence of overreaction to 

recent news stock price data.  They find that stocks that have extreme price movements in one 

direction are followed by subsequent price movements in the opposite direction.  In a similar 

fashion, we seek to test for evidence of overreaction in a sports betting market.  This leads to 

our first hypothesis: 

H1: Overreaction Hypothesis – the Betfair ‘in-play’ market overreacts to the outcome 
of certain ODI balls in a systematic way, and this can be exploited by a 
profitable trading strategy. 

 

We also examine this market for evidence of momentum effects similar to those found in 

stock price returns (Jegadeesh and Titman, 1993): 

H2: Underreaction Hypothesis – the Betfair ‘in-play’ market underreacts to the 
outcome of certain ODI balls in a systematic way, and this can be exploited by 
a profitable trading strategy. 

 
Hypotheses 1 and 2 look for “irrational” behaviour of the market around significant 

ODI ‘news’ events.  We also test if the market systematically misevaluates the current state of 

the match independent of any under or overreaction to recent events.  We do this by 

comparing the probability of victory determined by our model, with the probability of victory 



  
 

8 
 

implied by the market odds; executing a trading strategy when the discrepancy between the 

two models crosses a certain threshold. 

H3: Misestimated Probability of Victory Hypothesis – the Betfair ‘in-play’ market 
misestimates the probability of victory during an ODI cricket match and this 
can be exploited by a profitable trading strategy. 

 

3.2 Data 

Several extensive datasets are created and merged in this study.  The first dataset contains 

ball-by-ball information for 1,101 one-day internationals from June 2001 to March 2013, 

excluding all games between non-test playing nations and any games shortened due to rain or 

other interruptions. In total there are 601,744 balls recorded, each containing the following 

information: the over number; the ball number; the number of runs scored; the number of 

extras; whether the batsman was out; the batsman’s name; the bowler’s name; the match 

number; the innings number; the date; and the required run rate. Table 1 shows the frequency 

of each ball outcome in our sample. We obtain these unique data by executing a web-scraping 

program in Python.7 This program reads the ball-by-ball text commentaries available on 

Cricinfo,8 and extracts the relevant information.   

We also obtain data from Fracsoft, a company that records live prices offered by 

Betfair.  This sample covers 186 one-day internationals played from June 2006 to September 

2012. Notably, these odds data are available after every ball, rather than only after every over 

as in previous studies.  Although the Betfair dataset contains a time stamp, it does not contain 

the current score in the cricket match at that time.  Perversely, although the ball-by-ball 

Cricinfo dataset described above contains the scores it does not have a timestamp. Moreover, 

to the best of our knowledge this combined timestamp/score information is not publicly 

                                                 
7 Python is a widely used general-purpose, high-level programming language (see www.python.org).  
8 Cricinfo (www.espncricinfo.com) is the world’s leading cricket website and in the top five single-sport 
websites in the world. Its content includes live news and ball-by-ball coverage of all Test and one-day 
international matches. 
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available in any form.  Accordingly, we obtain a third dataset from Opta, another sports data 

provider containing the timestamp for every ball that was bowled for each of the 186 matches 

for which we have the live odds data.  Thus, exploiting all three data sources (Cricinfo, 

Fracsoft and Opta) we match up each ball with the corresponding live odds that were 

available at that time.  We also require the career batting average and strike rate of every 

player in every match in our sample, as well as the batting order for each game.  Again, we 

extract this information from Cricinfo using the Python web-scraping algorithm. 

It is well established that testing a model against the same data that was used to 

estimate the parameters will result in over-fitting.  Accordingly, the 186 matches for which 

we have live odds information from the original ball-by ball dataset are quarantined as the 

out-of-sample dataset for testing our trading rules.  All other games in the ball-by-ball dataset 

constitute the “in-sample” component for estimating the model parameters. 

3.3 Modeling  

3.3.1 Core Features of the Dynamic Programing Model  

We enhance the dynamic programming models of Carter and Guthrie (2004) and Brooker and 

Hogan (2010) to predict the outcome of each out-of-sample match.  Carter and Guthrie (2004) 

only condition on balls remaining and wickets in hand, while Brooker and Hogan (2011) also 

add in the run rate required and a conditions variable.  Our model extends the dynamic 

program in several key ways from the previous literature.  First, previous work only models 

the probability of victory for the second innings, whereas our model considers ball-by-ball at 

any time in the ODI. Second, we allow the probability of a batsman getting out or scoring a 

particular number of runs to vary as a function of their own current score.  It is a widely held 
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belief among cricket experts and fans that a batsman takes time to get their ‘eye-in’ and their 

performance generally improves the longer they have been batting.9  

Another key difference between our model and the previous models is that we split 

each innings up into various segments based on the number of overs and wickets remaining 

and we form our estimates separately on each of the segments.  This allows the intercepts and 

slope coefficients to vary throughout the innings in a non-linear way.  We argue that this 

conditioning approach produces more accurate predictions, since the relative importance of 

both wickets and overs remaining depend on the match situation.10   

We develop a separate model for both the first and second innings.  For the first 

innings we allow the outcome of any particular delivery to be influenced by six factors: (1) 

Balls (b) – number of balls remaining in the innings; (2) Wick (w)– number of wickets 

remaining for the batting team; (3) RR – current run rate per over of the batting team; (4) 

Score (s) – current score of the batsman on strike; (5) Av (a) – career batting average of the 

batsman on strike; and (6) SR (k) – career strike rate of the batsman on strike.11 

For each ball bowled, one of three general outcomes are possible: (1) a wide or no-ball 

with probability E; (2) if the ball is not a wide or no-ball then a wicket will fall with 

probability 𝑂(𝑏,𝑤,𝑅𝑅, 𝑠, 𝑎,𝑘); or (3) if the ball is not a wide or no-ball and a wicket has not 

fallen, the batsman scores 𝑥 runs with probability 𝑃(𝑥; 𝑏,𝑤,𝑅𝑅, 𝑠, 𝑎,𝑘), 

where 𝑥 𝜖 {0,1, … 6}.12 For modeling expediency, we assume that (a) each of these outcomes 

                                                 
9 We do not include the conditions variable used by Brooker and Hogan (2011) because it uses the result of the 
match to adjust the distribution of second innings scores.   
10 For example, the difference between being 3/250 or 6/250 off 45 overs is not the same as the difference 
between being 3/100 or 6/100 after 20 overs. 
11 Importantly, we use the career statistics of each batsman up until the start of the game in question to ensure 
that we are not conditioning on information that occurred subsequently to the game being modeled.   
12 While it is possible seven runs can be scored if the batsman hits a six off a no-ball, to keep our modeling more 
manageable, this highly unusual event is excluded. 
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are mutually exclusive; (b) only one run is scored when a wide or no-ball is bowled; and  (c) 

byes and leg byes are runs scored by the batsman.13    

We wish to estimate 𝐷(𝑟; 𝑏,𝑤,𝑅𝑅, 𝑠1, 𝑠2,𝑓,𝑝1,𝑝2,𝐴,𝐾) which represents the 

probability of scoring 𝑟 or less runs from the remaining 𝑏 deliveries, with 𝑤 wickets in hand, 

a current run rate of 𝑅𝑅, batsman one on a score of 𝑠1, batsman two on a score of 𝑠2, a 

dummy variable 𝑓 equal to 1 if batsman one is facing, p1 (p2) batting position of batsman one 

(two), career average A and strike rate K of every player in the team. Accordingly, the 

distribution function for the first innings is described by the following equation: 

 𝐷(𝑟; 𝑏,𝑤,𝑅𝑅, 𝑠1, 𝑠2,𝑓,𝑝1, 𝑝2,𝐴,𝐾) =                                                                           

                                            𝐸 × 𝐷(𝑟 − 1; 𝑏,𝑤,𝑅𝑅∗, 𝑠1, 𝑠2,𝑓,𝑝1,𝑝2,𝐴,𝐾)          

+ (1 − 𝐸) ∙ 𝑂(𝑏,𝑤,𝑓 ∙ 𝑠1 + (1 − 𝑓) ∙ 𝑠2,𝑎∗/𝑘∗) 

                                                × 𝐷(𝑟;𝑏 − 1,𝑤 − 1,𝑅𝑅∗, 𝑠1− 𝑓 ∙ 𝑠1, 𝑠2− (1 − 𝑓) ∙ 𝑠2,𝑓∗,𝑝1∗,𝑝2∗,𝐴,𝐾) 

       + (1− 𝐸) �1− 𝑂�𝑏,𝑤,𝑓 ∙ 𝑠1 + (1− 𝑓) ∙ 𝑠2,𝑎∗/𝑘∗�� 

× � 𝑃�𝑥;𝑏,𝑤,𝑅𝑅∗,𝑓 ∙ 𝑠1 + (1− 𝑓) ∙ 𝑠2,𝑘∗�
𝑖𝜖(0,1,..6)

 

                                     ×  𝐷(𝑟 − 𝑥;𝑏 − 1,𝑤,𝑅𝑅∗, 𝑠1 + 𝑓 ∙ 𝑥, 𝑠2 + (1− 𝑓) ∙ 𝑥, 𝑓∗,𝑝1,𝑝2,𝐴,𝐾)  (1) 

 

where 𝐴 and 𝐾 are 11 × 1 vectors containing the career average and strike rate respectively of 

each player in the team, 𝑎∗ = career average of the batsman on strike, 𝑘∗ = career strike rate of 

the batsman on strike and the remaining variables are as defined above.   

For notational convenience, 𝑅𝑅∗ denotes the new run rate after scoring 𝑖 runs off the 

given ball and 𝑓∗ denotes the updated value for 𝑓 which will change to (1 − 𝑓)  if the 

batsman scores an even number of runs on the last ball of the over or an odd number of runs 

on any other ball.  The model for the second innings is essentially the same except that we use 
                                                 
13 Since these events happen so infrequently, our simplifications have minimal impact on the estimation 
procedure while greatly simplifying the modelling process.   
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the run rate required for victory, RRR, instead of RR.  The other main difference will be that 

the distribution will be capped at the target score, given victory defined by the rules of 

cricket.14 

3.3.2 Probability of Losing a Wicket 

We estimate the probability of losing a wicket on a given ball using a probit model, as a 

function of Balls, Wick, Score, and Av/SR.  To illustrate, the results of running the regression 

for each of the 15 first innings segments is displayed in Table 2.15 We can see that the 

estimated coefficients on balls remaining are not significant for seven out of the first eight 

innings segments but are significantly negative for all but one of the last seven segments.  The 

negative signs are consistent with the idea that the more balls that are remaining in the 

innings, the higher the cost of losing a wicket because the batting team runs the risk of not 

using up all of their available overs.  In the latter stages of the innings however, the cost of 

losing a wicket is lower because the potential number of overs wasted is much smaller and so 

teams take a more aggressive approach and, therefore, the likelihood of a wicket falling is 

higher.   

 Only five out of the 15 coefficients on wickets remaining are significant, but this does 

not mean that wickets remaining is unimportant factor in determining the likelihood of a 

wicket falling.  This is because we have split the sample up into different segments based on 

the number of wickets in hand and so, by construction, we have reduced the variation in the 

wickets remaining variable, which naturally decreases the likelihood of finding significant 

coefficients. We see eight of 15 cases show a significant coefficient on batter score – in all 

cases taking a positive sign. This suggests that, other things equal, the higher the batter’s 

                                                 
14 For the purposes of estimating the probability of a wide or no ball, we assume that the chances of the bowler 
conceding a wide or no-ball is identical for all match situations and is independent of the conditioning variables 
used for the wickets and run scoring processes.   
15 To conserve space, we do not tabulate the second innings counterpart – details are available from the authors 
upon request. 
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score the more likely a wicket will fall – a well understood phenomenon especially for very 

high scores. Notably, the coefficients on the Av/SR variable are negative and statistically 

significant for all 15 innings segments.  As predicted, a player with a higher ratio of average 

to strike rate is relatively less likely to get out on a particular ball, holding all else equal.   

3.3.3 Runs Process 

We employ an ordered probit model for estimating the run scoring process (0, 1, …, 6), using 

the very similar explanatory variables16 as we did for estimating the probability of a wicket: 

Balls, Wick, RR, Score, SRate in the first innings (with RRR substituting for RR in the second 

innings).   The ordered probit model will estimate a conditional distribution for the number of 

runs scored off the next delivery conditional on the batsman not being out and on the ball 

being a legal delivery.  Similar to the regular probit model, we split our sample up into 

various innings segments to capture non-linearities.  

 To illustrate, the coefficient estimates for this model applied to the second innings are 

presented in Table 3.17 We see that the three most influential variables are required run rate, 

batter’s score and strike rate. The batter score coefficients are positive and statistically 

significant for all 30 innings segments. The positive sign is consistent with the appealing idea 

that batsmen become more comfortable at the crease the longer they have been there, and are 

subsequently able to score at a faster rate relative to a batsman on a lower score.  The 

coefficients on the strike rate variable are positive and significant in 29 out of the 30 innings 

segments. 

3.3.4 Monte Carlo Simulation Strategy 

Armed with the estimates of the transition probabilities from the modeling described above, 

we can obtain the distribution function for runs scored in the innings.  In prior papers this step 
                                                 
16 This assumption is a natural consequence of the observation that a batsman’s scoring rate and probability of 
getting out are positively correlated (Clarke, 1988).   
17 To conserve space, we do not tabulate the first innings counterpart – details are available from the authors 
upon request. 
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has been done by the process of backward induction. One of the main drawbacks of backward 

induction and dynamic programming models generally, is that the number of possible 

permutations increases exponentially with the number of input variables required at each 

state.  This ‘curse of dimensionality’ makes backward induction computationally impossible 

with more than a few input variables.    

For example, as Carter and Guthrie (2004) only condition on balls and wickets 

remaining, they are able to backward solve for the distribution function.  Our model, however, 

has six values that can change states on any ball.  Our RR variable, being continuous, 

complicates matters even further. Indeed, even if discretise it into say 10 possible values, 

there are still over 500 billion18 possible match situations per innings and for each of those 

situations we would need to trace every possible path to the end of the innings.  Clearly, given 

the magnitude of the calculations required, the curse of dimensionality is prohibitive.   

Our solution is to use Monte Carlo simulation to approximate the distribution 

function.  For any given set of input values we can then simulate each of the remaining balls 

until the end of the innings, recording the number of runs scored.  Repeating this process 

numerous times, we obtain a distribution of possible innings scores for that initial match 

situation. Having obtained this distribution we can estimate a projected score by taking the 

average value of the distribution.  This allows us to track the projected score throughout an 

innings as illustrated in the example presented in Figure 1 – the ball-by-ball projected score 

for Sri Lanka’s first innings, played on 17 June, 2006.   

We select an evenly spaced subset of the possible input values and construct a grid for 

which simulation is both feasible and meaningful. Specifically, for each of the 101,177 balls 

in our 186-game sample we run 1,000 simulations from that point until the end of the 

                                                 
18 Based on the assumption of a maximum innings score of 400 and a maximum batter score of 150, the number 
of match situations can be calculated as:  400 × 300 × 10 × 10 × 150 × 150 × 2 = 500,400,000,000 



  
 

15 
 

innings.19 We repeat a similar simulation process as described above to obtain the distribution 

of scores at any given point in the second innings.  The main difference is that the second 

innings ends when Team 2 surpasses the score made by Team 1, which means that the 

distribution of scores for Team 2 will be right-side truncated.  

3.3.5 Probability of Victory 

We convert our distribution of innings scores into probabilities of victory, briefly described 

below for the simpler case of the second innings.20  We substitute the current values of the 

input variables 𝑏,𝑤,𝑅𝑅𝑅, 𝑠1, 𝑠2, 𝑓,𝐴 and 𝐾 into our simulation algorithm to obtain a 

distribution of scores.  We then calculate the proportion of simulated scores that are greater 

than or equal to Team 1’s score and this is our estimated probability of victory for Team 2.   

 

3.4 Trading Strategies 

We construct a range of trading strategies with varying levels of restrictions.  All of our 

strategies revolve around looking for discrepancies between the odds offered by the market 

and the implied odds suggested by our model.  The most basic trading strategy executes a 

trade whenever the discrepancy between our model and the market odds reaches some 

                                                 
19 To perform this mammoth simulation exercise once took around 12 (24/7) days of solid computing time. 
Although this seems like a prohibitively long time, it only takes a few seconds to run 1,000 simulations from a 
given state of any one ODI game. Given that the time elapsed between each ball usually is a minimum of 30 
seconds (and these are the least interesting “dot” balls), this leaves ample time for the purposes of placing wagers 
as part of our trading strategies. 
20 Estimating the probability of victory at any point during the first innings requires some additional steps.  
Specifically, for each of these simulated scores we simulate 10,000 second innings attempts at chasing that score.  
While at first it might seem intractable to perform 10,000 additional simulations for each of the first innings 
simulations, the problem becomes much more manageable when we recognise that the input variables will be the 
same at the start of the second innings regardless of what happened in the first innings.  So we set b=300, w=10, 
s1=0, s2=0, f=1 and then just vary RRR in order to obtain a distribution of simulated scores for chasing each 
possible target. We assume that the probability of chasing any target over 500 is equal to zero. Given that there 
has only ever been one successful run chase of over 400 runs in over 3,000 ODIs we do not expect this 
truncation to  materially affect the results. We can now take each simulated first innings score and look up the 
corresponding probability of Team 2 chasing it and subtract one to obtain the probability of victory for Team 1.  
Finally, we take the average of all of those probabilities to obtain our estimate of the probability of victory for 
Team 1.  It is important to point out the order in which we do this: we calculate the probability of chasing each 
simulated score and then take the average of those probabilities.  This subtle difference, recognising Scwartz’ 
inequality, is likely to have a non-negligible effect on the final estimate of the probability of victory. 
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threshold level, which we call ‘delta’.  More stringent trading rules only place trades when the 

odds are particularly favourable.   

To illustrate, Figure 2 shows a comparison of the market and model implied 

probabilities of victory for the first innings of ODI #3207 between England and India on 

October 23, 2011. We can see that there are situations throughout the match where there is a 

substantial discrepancy between the market and model implied probabilities of victory, 

particularly around the fall of a wicket.  It is in these situations that we seek to place trades. 

We impose a trading restriction to limit the number of trades that can be placed per 

innings.  This is to ensure that we do not end up with a strategy unduly influenced by the 

outcome of a single match.  Another restriction involves only betting on games where the 

initial odds discrepancy at the start of the game falls within some threshold.  In some sample 

games, there is a large initial discrepancy due to un-modelled factors which are likely to lead 

to poor bets.   

We also implement a series of strategies that adjust our model odds to account for the 

initial discrepancy.  As the match progresses we expect that the market will place a greater 

weight on the current state of the match and less on any pre-match differences in skill.  

Accordingly, we make an adjustment equal to the initial discrepancy multiplied by the 

percentage of the match that is left to be played (1st and 2nd innings, respectively): 

adjustment = initial discrepancy × �1 − 0.5 × current score
projected score

� (2a) 

adjustment = initial discrepancy × �0.5 − 0.5 × current score
projected score

� (2b) 

Our trading strategies need to take into consideration two further factors.  First, for 

any bet, we need to calculate whether it is more advantageous to ‘back’ one team or ‘lay’ the 
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other.  For example, if we believe that the market underestimates the probability of Team 1 

winning we should place a back bet on Team 1 if the following relationship holds:21 

 
1

back 1
 <  �1 −

1
lay 2

� 

Otherwise we should lay odds for Team 2.22   

The second important consideration to make when trading on an exchange-style 

betting market is the size of the spread between the available prices on either side of a trade.  

In traditional financial markets this is known as the ‘bid-ask’ spread, whereas in our context it 

is the ‘back-lay’ spread.  The size of the spread from the mid-point essentially represents a 

transaction cost when placing any bet.  Consequently we avoid placing bets when this spread 

is ‘overly’ large.  Our trading strategies will employ a variety of different thresholds to see if 

we can enhance our returns by only trading in liquid markets where the transaction costs are 

low.  We calculate the combined probability of Team 1 or Team 2 winning that is implied by 

the available back and lay prices.  While in a perfect market with no fees or transaction costs 

we would expect this to equal 100%, in any market with a non-zero spread it exceeds 100%.   

Finally, we note that for us to refrain from betting, the combined probability implied 

by the back and lay odds must be greater than the threshold level for both Team 1 and Team 

2.  As explained earlier, we can replicate any strategy of backing or laying Team 2 by backing 

or laying Team 1.  So as long as one of the pairs of back-lay spreads is below the threshold 

we can still place a trade.  There are situations where we select the odds from the wider spread 

because it is a more enticing opportunity.   

                                                 
21 Back 1 represents the odds available to back Team 2. Lay 2 represents the odds available to lay Team 2. 
22 When ‘laying’ odds on a particular team, if that team ends up winning, you are liable to pay the wagered 
amount multiplied by the odds at which the bet was laid.  To maintain our strategy of placing a $100 bet on each 
game, we lay an amount such that our net exposure is equivalent to a ‘back’ bet of $100.   
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4. Results  

4.1 Preliminaries  

Unlike a typical regression situation, we do not have ‘off-the-shelf’ standard errors that we 

can use to determine if the returns generated by our trading strategies are statistically 

significant.  We want our p-value to represent the probability of obtaining our results purely 

by chance if the null hypothesis is in fact true i.e. the Betfair market is efficient.  We do this 

using a bootstrap simulation procedure described below.   

For each trading strategy, we simulate the payoff of an identical strategy that places 

the same bets on the same team at the same odds.  The key difference is that instead of the 

payoff of each bet being determined by the actual outcome of the match, the result is 

randomly generated such that the probability of each team winning, matches the probability 

implied by the market odds.  For example, if we back Team 1 at odds of $2.50, the implied 

probability of victory is 40%.23 We then generate a uniformly distributed random number 

between zero and one and if that number is less than 40%, we treat that as a win for Team 1 

and the $250 payoff is credited to the random strategy.   

We repeat this procedure for every bet placed by a given trading strategy and 

aggregate the payoffs to get the total payoff for one random sample.  We then repeat this 

process 1,000 times to get a distribution of possible payoffs for a given set of bets.  The p-

value is then calculated as the proportion of those random payoffs that are greater than the 

actual payoff of the strategy.  In other words it is an estimate of the probability of achieving 

the observed returns of a strategy purely by chance if the market odds are an unbiased 

estimate of the true probability of victory.   

                                                 
23 prob(Team 1 win) = 1

odds to back Team 1
= 1

2.50
= 40%. 



  
 

19 
 

4.2 Testing the Overreaction Hypothesis (H1)  

The first strategy that we implement assesses hypothesis (H1) that the Betfair ‘in-play’ market 

overreacts to significant news events.  If the market overreacts in a manner similar to De 

Bondt and Thaler (1985), a strategy of betting on the batting team immediately after the fall 

of a wicket should yield positive returns.  Table 4 reports the results of following this trading 

rule, placing $100 wagers in the first innings under a variety of trading restrictions. 

The table shows a clear monotonically increasing relationship between the strictness 

of the probability restriction and the return to the trading strategy.  An unrestricted strategy 

generates a return of -12.3% from 1,232 bets placed.  The most restrictive probability bracket 

of 40-60% yields a return of 20.8% from 300 bets placed, significant at the 1% level.  This is 

strong evidence to suggest that the market overreacts to the fall of a first-innings wicket in an 

economically exploitable fashion.  Another interesting result from Table 4 is that the return 

increases when going from an unrestricted strategy on the back-lay spread to a restriction of 

less than 100.75% for all five win probability segments.  This is consistent with the restriction 

avoiding trades with large transaction costs, to enhance returns.24 

  The results from Table 4 are consistent with the idea that the market overweights 

news events that occur early in the match.  Given that a one-day international is usually 

played over a nine-hour period, there is plenty of opportunity for the momentum to shift 

between the two teams and it is not uncommon for favouritism to shift from one side to 

another multiple times throughout a match.  It is possible that the market gets carried away 

with an early wicket ignoring the fact that a large portion of the match is yet to be played. 

                                                 
24 Unlike the first innings, we find no evidence of overreaction in the second innings – these results are not 
reported to conserve space. Details are available from the authors upon request. 
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4.3 Testing the Underreaction Hypothesis (H2)  

Our second hypothesis (H2) assesses whether the market underreacts to significant news 

events as documented by Jagadeesh and Titman (1993) for stock market returns.  For this 

momentum trading strategy we place a bet on the fielding team when a wicket is taken either 

through backing the fielding team or laying odds for the batting team. The (untabulated) 

results of this test for the first ODI innings, shows no economic or statistical significance of 

underreaction.25 This is not surprising given that we documented strong evidence of 

overreaction, and it would be unlikely that both momentum and contrarian strategies could 

both prove profitable under similar trading specifications on the same innings.   

Table 5 contains the results for these underreaction-based strategies in the second 

innings. The results show some evidence of underreaction in the second innings with 11 out 

of 15 cases generating positive returns, though only 3 of these are significant at the 10% level.  

The most profitable strategy involves no restriction on the back-lay spread, with trades only 

placed when the model probability of victory was between 10 and 90 percent. 

  

4.4 Testing the Misestimated Victory Probability Hypothesis (H3) 

In line with hypothesis H3, we now test if the market systematically misestimates the 

probability of victory at various stages throughout a cricket match, independent of the 

reaction to any particular event.  The trading strategy is based on betting when big differences 

occur between our model odds and the market odds.  

 The first set of trading strategies focus on the first innings using a delta of 10%, with 

no adjustment made to account for the initial odds discrepancy.  Each strategy has a different 

combination of restrictions placed in terms of the overs in which a bet can be placed, the 

interval in which the probability of victory must lie and whether or not we restrict trades 

                                                 
25 These results are not reported to conserve space. Details are available from the authors upon request. 
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whose initial discrepancy crosses a certain threshold.  The results of these strategies are 

reported in Table 6. 

An unrestricted strategy of placing a bet whenever the discrepancy between the market 

implied probability of victory and the model probability of victory crosses 10%, yields a 

return of 10.3% that is significant at the 10% level.  If we implement a similar strategy, but 

refraining from trading on games where the initial discrepancy between the market and the 

model is greater than 15%, the return increases to 17.4% and is now significant at the 5% 

level.  As we increase the strictness of the restrictions in terms of the overs and probability 

interval, the number of eligible bets that can be placed diminishes and the returns are no 

longer statistically significant.26 

As discussed earlier, there is often a discrepancy between the market odds and our 

model odds at the start of a match due to un-modelled factors that might affect the outcome of 

the game.  Table 7 reports the results of trading strategies that make an adjustment for this 

initial difference in the odds as detailed earlier. The trading strategies shown in this table 

display positive returns ranging from 7-36%.  The strategies that restrict bets from being 

placed outside of overs 15-35 have large positive returns but the majority are not statistically 

significant at the 10% level, again likely due to the reduction in the number of bets relative to 

the unrestricted strategies.  All ten unrestricted strategies are statistically significant at a 

minimum 10% level.  Interestingly, a strategy that restricts bets to when the probability of 

victory is between 40 and 60 percent, yields a return of 36.2% which is significant at the 1% 

level.  This is strong evidence that inefficiencies exist in the ‘in-play’ Betfair market for 

ODIs. 

                                                 
26 In unreported analysis, increasing the delta required before placing a bet improves the profitability of the 
trading strategies relative to those reported in Table 6.  In particular, the trading strategies with a restriction on 
the initial discrepancy now yield returns ranging from 25.5-32.8% with statistical significance at the 5% or 10% 
level for the 0-50 over strategies.  Although the strategies with no restriction on the initial discrepancy now have 
a higher return than in Table 6, because there are fewer bets placed, the majority of are not statistically 
significant. 
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When the Table 7 analysis is repeated for a delta of 15% (unreported), no strategy is 

statistically significant at the 10% level.  This result is not surprising given that a delta of 15% 

is going to occur much less frequently than in Table 7, since we have adjusted the model odds 

to account for the initial discrepancy between the market and the model.  With such a 

reduction in the number of bets in each strategy, it is much more difficult to find significant 

results. 

In our final test, a similar set of trading strategies on the second ODI innings are 

analysed and Table 8 reports the results for the 10% delta case, with no initial odds 

adjustment. While all trading strategies show positive economic returns, only the strategies 

that restrict bets from being placed outside of overs 15-35 are statistically significant.27  One 

possible explanation for this is that the latter stages of the second innings will likely be 

influenced by game specific factors that are not taken into account in our model.28     

A further reason that our model might not perform as well towards the very end of the 

game is that the career batting averages and strike rates in our model will convey limited 

information in the final stages of a game.  By then, the majority of players will have batted 

and most of the overs will have been completed so that the career statistics are of little 

consequence.   

 

                                                 
27 In unreported analysis, we apply an initial odds adjustment to the second innings sample in a comparable way 
to Table 7 for the first innings. This produces a negative return to all trading strategies for the second innings.  
This is not unexpected since the relative importance of any pre-match differences in skill that were factored in to 
the market odds at the start of the match will diminish as the match progresses. 
28 For example, if a team requires 20 runs off 2 overs to win the game, factors such as the ‘Death bowling’ 
ability of the remaining bowlers and the ability of the batsman to play under pressure becomes important.  While 
we would expect the market to take these factors into account, capturing this would be difficult as it would 
require the model to keep track of how many overs each bowler has bowled, as well as having some sort of death 
bowling and pressure batting rating for each player. 
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5. Conclusions 

This study tests a range of trading strategies using the ‘in-play’ Betfair market for ODI cricket 

games.  Unlike a traditional financial market, such sports betting markets provide an ideal 

setting for these tests because the true value of the asset is revealed at a definite ending point.  

An ‘in-play’ cricket betting market is especially comparable to a traditional financial market 

because there is regular sequence of ‘news events’ (in the form of the outcome of each 

delivery) that must be priced by the market.  This allows us to unambiguously measure the 

market’s perception of the impact of the information arrival to determine if the market reacts 

in a rational and efficient manner.  Our method utilises information at the ball-by-ball level to 

estimate the model parameters. While ball-by-ball histories been recorded for all one-day 

internationals since 2001, it is only with major advances in computer technology in very 

recent times, that there is now sufficient accessible data to obtain reliable parameter estimates. 

But as explained in the paper, simulation of game scenarios with the richness/depth of models 

that we employ is no trivial task and our solutions to these challenges represent major 

breakthroughs in this literature. 

We construct a series of momentum and contrarian strategies designed to exploit any 

systematic biases in the market’s reaction to the outcome of each ball. We also examine if the 

market systematically misestimates the probability of victory throughout a cricket match 

independent of their reaction to a single news event.  To the best of our knowledge, ours is the 

first study to factor in player-specific characteristics of any sort to determine the probability 

of victory at any point in a match. To achieve this last goal we require a model to estimate 

what impact a particular news event should have on the market odds.  Specifically, we 

develop a Monte Carlo simulation procedure to estimate a distribution of scores from any 

possible match situation.  Our key results are summarised below.   
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The most successful strategy in terms of both economic and statistical significance is 

achieved in the first innings by placing bets when the batting side had a probability of victory 

between 40 and 60 percent and when the combined spread was less than 100.75%.  This 

overreaction-based strategy yields an after-commission return of 20.8%, significant at the 1% 

level.  In the second innings we find evidence that the market underreacts to the fall of a 

wicket. The most profitable return is achieved by betting on the fielding team to win 

immediately after the fall of a wicket as long as the batting team’s probability of victory is 

between 20 and 80 percent and the combined spread is less than 100.50%.  This strategy 

achieves an after-commission return of 9.3%.   

Regarding whether the market systematically misestimates the probability of victory, 

we document several profitable trading strategies in the first and second innings.  The most 

profitable first innings trading strategy is achieved with a delta of 10% and a restriction on 

placing bets when the model probability of victory is outside of the 40 to 60 percent range.  

This strategy generates a return of 38.6%, significant at the 1% level.  Overall, these results 

suggest that the ‘Betfair’ market does not satisfy the definition of weak-form efficiency 

suggested by Thaler and Ziemba (1988). 
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Figure 1:  Current vs. projected score for Sri Lanka in ODI played 17 June, 2006 
This figure shows a comparison of the current score versus the projected score throughout Sri Lanka’s first 
innings in ODI #2384 played on June 17, 2006.  The blue line represents their actual score throughout the 
innings, with the black asterisks denoting the fall of each wicket.  The red line is the mean of the distribution of 
simulated scores obtained from our Monte Carlo procedure described in the main text.  

 
Figure 2:  Market versus model probability of victory – ODI #3207 – England vs. India 
This figure shows a comparison of the probability of victory implied by the current market odds (red line) with the estimated 
probability given by our model (black line) for the first innings of ODI # 3207. The blue asterisks represent the fall of each 
wicket.  
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Table 1: Distribution of Ball Outcomes 
This table presents the observed frequency of ball outcomes in our full sample of 1,101 ODI 
matches played between June 2001 to March 2013.  Byes and leg byes are treated as runs 
scored by the batsman. 
  Innings 1   Innings 2   
Outcome Frequency %   Frequency % Total 

Wicket 8,629 2.7%   7,249 2.6% 15,878 
Wide 6,399 2.0%   5,639 2.0% 12,038 

No-ball 1,342 0.4%   1,305 0.5% 2,647 
0 runs 157,068 48.6%   138,657 49.8% 295,725 
1 run 103,218 31.9%   84,497 30.4% 187,715 
2 runs 18,463 5.7%   15,262 5.5% 33,725 
3 runs 2,480 0.8%   2,309 0.8% 4,789 
4 runs 22,090 6.8%   20,241 7.3% 42,331 
5 runs 504 0.2%   468 0.2% 972 
6 runs 3,256 1.0%   2,621 0.9% 5,877 
7 runs 22 0.0%   25 0.0% 47 

              
Total 323,471     278,273   601,744 
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Table 2:  Estimates for the Wickets Process for ODI Innings 1 
This table shows the coefficient estimates for the probit model, modeling the likelihood of a wicket occurring on 
the next ball bowled.  The explanatory variables are: Balls – number of balls remaining in the innings; Wick – 
number of wickets remaining for the batting team; Score – current score of the batsman on strike; Av/SR – on 
strike batsman's career batting average divided by his career strike rate.  The coefficients are separately 
estimated for each of the 15 innings/wickets segments.  The first column shows the number of sample 
observations that occur in each bivariate segment in the actual dataset. ***, ** and * indicate significance at 1%, 
5% and 10% levels, respectively.  

Seg 
Num # Obs Over 

Segment 
Wicket 

Segment 
constant 

(β0) 
Balls 
(β1) 

Wick 
(β2) 

Score 
(β3) 

Av/SR 
(β4) 

1     34,507  1-15 0 -1.015 -0.002 - 0.001 -0.013*** 
2     40,227  1-15 1-2 -1.506 -0.001 0.026 -0.001 -0.013*** 
3       8,522  1-15 3-9 -1.976 -0.001 0.109** 0.008** -0.012*** 
4     43,409  16-35 0-2 -1.848 0.000 0.018 0.001* -0.009*** 
5     44,565  16-35 3-4 -1.941 0.001** -0.008 0.003*** -0.008*** 
6     20,503  16-35 5-9 -1.566 0.000 -0.022 0.003** -0.011*** 
7       8,716  36-40 0-3 -1.856 -0.004 0.074* 0.001 -0.007** 
8     10,445  36-40 4-5 -1.578 -0.004 0.071 0.003** -0.015*** 
9       6,525  36-40 6-9 -0.939 -0.007* -0.061* 0.002 -0.010** 
10       9,607  41-45 0-4 -1.706 -0.005* 0.067** 0.002** -0.007*** 
11       9,464  41-45 5-6 -1.404 -0.005 -0.005 0.001 -0.007** 
12       5,395  41-45 7-9 -1.154 -0.007** -0.040 0.003 -0.010** 
13       8,050  46-50 0-5 -1.245 -0.007*** 0.005 0.002*** -0.006*** 
14       8,290  46-50 6-7 -1.168 -0.021*** 0.072* 0.002** -0.008*** 
15       5,288  46-50 8-9 -0.900 -0.027*** 0.020 -0.001 -0.007* 
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Table 3:  Estimates for the Runs Process for ODI Innings 2 
This table shows the coefficient estimates for the ordered probit model, modeling the runs process for the next 
ball bowled (assuming that a wicket will not fall).  The dependent variable takes the integer values 0, 1, …, 6.  
The explanatory variables are: Balls – number of balls remaining in the innings; Wick – number of wickets 
remaining for the batting team; RRR – required run rate for the batting time; Score – current score of the 
batsman on strike; SRate – career strike rate of the batsman on strike.  The coefficients are separately estimated 
for each of the 30 innings/wickets segments.  The first column shows the number of sample observations that 
occur in each bivariate segment. ***, ** and * indicate significance at 1%, 5% and 10% levels, respectively.  
 

Seg 
Num # Obs Over 

Segment 
Wicket 

Segment 
Balls 
(β1) 

Wick 
(β2) 

RRR 
(β3) 

Score 
(β4) 

SRate 
(β5) 

1    19,659  1-5 0 -0.0081*** - 0.0111 0.0146*** 0.0129*** 
2      5,989  1-5 1 -0.0061** - 0.0447*** 0.0211*** 0.0063*** 
3      1,511  1-5 2-9 0.0006 -0.0130 -0.0158 0.0277*** 0.0112** 
4      9,044  6-10 0 0.0063*** - 0.0233*** 0.0131*** 0.0083*** 
5    10,234  6-10 1 -0.0007 - 0.0279*** 0.0119*** 0.0070*** 
6      7,647  6-10 2-9 0.0021 0.0096 0.0177 0.0172*** 0.0051** 
7      4,465  11-15 0 -0.0021 - 0.0331*** 0.0059*** 0.0125*** 
8      7,923  11-15 1 -0.0032** - 0.0268*** 0.0077*** 0.0110*** 
9    14,219  11-15 2-9 0.0001 0.0568*** 0.0213*** 0.0107*** 0.0079*** 
10      7,505  16-20 0-1 -0.0030* 0.0446 0.0214*** 0.0052*** 0.0063*** 
11    13,351  16-20 2-3 0.0000 0.0210 0.0379*** 0.0061*** 0.0078*** 
12      5,367  16-20 4-9 -0.0013 0.0283 0.0286*** 0.0116*** 0.0082*** 
13    10,758  21-25 0-2 -0.0019 -0.0113 0.0319*** 0.0043*** 0.0081*** 
14    10,027  21-25 3-4 -0.0016 0.0869*** 0.0356*** 0.0055*** 0.0087*** 
15      4,462  21-25 5-9 -0.0026 0.0221 -0.0020 0.0093*** 0.0060*** 
16      7,107  26-30 0-2 -0.0020 0.0163 0.0339*** 0.0030*** 0.0088*** 
17    10,223  26-30 3-4 -0.0024* 0.0515** 0.0353*** 0.0051*** 0.0072*** 
18      6,586  26-30 5-9 0.0008 -0.0119 -0.0123* 0.0090*** 0.0099*** 
19      4,662  31-35 0-2 0.0010 -0.0102 0.0536*** 0.0042*** 0.0094*** 
20      8,915  31-35 3-4 -0.0007 0.0911*** 0.0256*** 0.0044*** 0.0076*** 
21      8,736  31-35 5-9 -0.0002 0.0203* 0.0239*** 0.0084*** 0.0053*** 
22      5,947  36-40 0-3 -0.0042** -0.0002 0.0476*** 0.0025*** 0.0111*** 
23      6,706  36-40 4-5 -0.0033** 0.0115 0.0362*** 0.0035*** 0.0101*** 
24      7,377  36-40 6-9 -0.0039** 0.0365** 0.0174*** 0.0060*** 0.0102*** 
25      5,118  41-45 0-4 -0.0085*** 0.0262 0.0369*** 0.0025*** 0.0055** 
26      5,437  41-45 5-6 -0.0053*** 0.0008 0.0210*** 0.0045*** 0.0069*** 
27      6,076  41-45 7-9 -0.0027 0.0630*** 0.0097*** 0.0059*** 0.0104*** 
28      1,319  46-50 0-4 -0.0041 -0.0283 0.0001 0.0027*** 0.0047 
29      4,101  46-50 5-7 -0.0083*** -0.0074 -0.0013** 0.0033*** 0.0092*** 
30      3,743  46-50 8-9 -0.0108*** 0.1270*** -0.0003 0.0028*** 0.0154*** 
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Table 4: Testing Market Overreaction Hypothesis (H1), First ODI Innings 
This table shows the summary results from implementing a series of trading strategies on the first innings of ODI matches in our 
sample.  A hypothetical trade is placed at the fall of every wicket in every first innings.  We place a $100 bet on Team 1 to win 
either by placing a $100 back bet on Team 1 or placing a lay bet on Team 2 that has a $100 exposure.  Pr(win) represents the 
probability of victory implied by our model. Back-Lay spread represents the combined probability of victory of Team 1 or Team 2 
winning implied by the back-lay odds available.  Net $P/L is the profit after adjusting for the 5% commission charged by Betfair on 
the profit of each winning bet. The p-value represents the probability of obtaining a profit greater than or equal to the actual profit 
observed, assuming that the market odds represent the true probability of victory. ***, **, * indicate significance at the 1%, 5% 
and 10% levels, respectively. 

Pr(Win) Back-Lay 
Spread 

Number  
of bets Total Bet Total 

Payoff Gross $P/L Net 
$P/L Return p-value 

0-100% -         1,232  $123,200 $110,878 -$12,322 -$15,111 -12.3% 0.991 
 0-100% <100.75%         1,041  $104,100 $99,389 -$4,711 -$7,286 -7.0% 0.861 
 0-100% <100.50%            682  $68,200 $66,517 -$1,683 -$3,373 -4.9% 0.717 
 10-90% -         1,119  $111,900 $106,559 -$5,341 -$8,064 -7.2% 0.891 
 10-90% <100.75%            979  $97,900 $96,104 -$1,796 -$4,311 -4.4% 0.663 
 10-90% <100.50%            661  $66,100 $65,228 -$872 -$2,553 -3.9% 0.624 
 20-80% -            949  $94,900 $94,571 -$329 -$2,737 -2.9% 0.557 
 20-80% <100.75%            842  $84,200 $87,183 $2,983 $729 0.9% 0.188 
 20-80% <100.50%            596  $59,600 $62,236 $2,636 $1,034 1.7% 0.170 
 30-70% -            692  $69,200 $73,937 $4,737 $2,845 4.1% 0.054 * 

30-70% <100.75%            599  $59,900 $66,508 $6,608 $4,897 8.2% 0.010 ** 

30-70% <100.50%            453  $45,300 $49,996 $4,696 $3,432 7.6% 0.013 ** 

40-60% -            353  $35,300 $41,905 $6,605 $5,489 15.6% 0.005 *** 

40-60% <100.75%            300  $30,000 $37,211 $7,211 $6,226 20.8% 0.001 *** 

40-60% <100.50%            234  $23,400 $27,764 $4,364 $3,666 15.7% 0.004 *** 
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Table 5: Testing Market Underreaction Hypothesis (H2), Second ODI Innings   
This table shows the summary results from implementing a series of trading strategies on the second innings of ODI matches in our 
sample.  A hypothetical trade is placed at the fall of every wicket in every second innings.  We place a $100 bet on Team 2 to win 
either by placing a $100 back bet on Team 2 or placing a lay bet on Team 1 that has a $100 exposure.  Pr(win) represents the 
probability of victory implied by our model. Back-Lay spread represents the combined probability of victory of Team 1 or Team 2 
winning implied by the back-lay odds available.  Net $P/L is the profit after adjusting for the 5% commission charged by Betfair on 
the profit of each winning bet. The p-value represents the probability of obtaining a profit greater than or equal to the actual profit 
observed, assuming that the market odds represent the true probability of victory. ***, **, * indicate significance at the 1%, 5% 
and 10% levels, respectively. 

Pr(Win) Back-Lay 
Spread 

Number  
of bets Total Bet Total 

Payoff Gross $P/L Net $P/L Return  p-value 

0-100% - 1,074 $107,400 $114,936 $7,536 $5,269 4.9% 0.1410 
0-100% <100.75% 810 $81,000 $77,383 -$3,617 -$4,796 -5.9% 0.5830 
0-100% <100.50% 527 $52,700 $50,623 -$2,077 -$2,763 -5.2% 0.3550 
10-90% - 500 $50,000 $55,545 $5,545 $4,127 8.3% 0.033** 
10-90% <100.75% 410 $41,000 $42,470 $1,470 $452 1.1% 0.2690 
10-90% <100.50% 229 $22,900 $24,451 $1,551 $968 4.2% 0.2050 
20-80% - 352 $35,200 $37,606 $2,406 $1,461 4.2% 0.1680 
20-80% <100.75% 285 $28,500 $29,032 $532 -$205 -0.7% 0.419 
20-80% <100.50% 177 $17,700 $19,851 $2,151 $1,644 9.3% 0.083* 
30-70% - 221 $22,100 $24,843 $2,743 $2,066 9.3% 0.076* 
30-70% <100.75% 182 $18,200 $18,295 $95 -$410 -2.3% 0.443 
30-70% <100.50% 124 $12,400 $13,473 $1,073 $704 5.7% 0.212 
40-60% - 98 $9,800 $11,144 $1,344 $1,027 10.5% 0.140 
40-60% <100.75% 89 $8,900 $10,175 $1,275 $986 11.1% 0.157 
40-60% <100.50% 63 $6,300 $6,791 $491 $302 4.8% 0.288 
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Table 6: Testing the Misestimated Probability of Victory Hypothesis (H3) – No Odds 
Adjustment, First ODI Innings 
This table shows the summary results from implementing a series of trading strategies on the first innings of ODI matches 
in our sample. No adjustment is made to account for the initial discrepancy in odds between the market and our model. A 
hypothetical trade is placed when the discrepancy between the market implied probability of victory and the estimated 
probability of victory given by our model is greater than 10%.  Only one bet is placed per innings in any given match. 
Pr(win) represents the probability of victory implied by our model. Net $P/L is the profit after adjusting for the 5% 
commission charged by Betfair on the profit of each winning bet. The p-value represents the probability of obtaining a 
profit greater than or equal to the actual profit observed, assuming that the market odds represent the true probability of 
victory. ***, **, * indicate significance at the 1%, 5% and 10% levels, respectively.  

Overs pr(win) Initial 
Discrepancy 

Num 
bets Total Bet Total 

Payoff 
Gross 
$P/L Net $P/L Return p-value 

0-50 0-100% - 148 $14,800 $16,770 $1,970 $1,521 10.3% 0.064 * 

0-50 0-100% < 15% 97 $9,700 $11,682 $1,982 $1,687 17.4% 0.017 ** 

0-50 10-90% - 146 $14,600 $16,530 $1,930 $1,483 10.2% 0.067 * 

0-50 10-90% < 15% 96 $9,600 $11,562 $1,962 $1,668 17.4% 0.018 ** 

0-50 20-80% - 138 $13,800 $15,336 $1,536 $1,104 8.0% 0.111   
0-50 20-80% < 15% 88 $8,800 $10,367 $1,567 $1,289 14.6% 0.057 * 

0-50 30-70% - 129 $12,900 $14,066 $1,166 $753 5.8% 0.162   
0-50 30-70% < 15% 79 $7,900 $9,085 $1,185 $926 11.7% 0.106   
0-50 40-60% - 109 $10,900 $11,876 $976 $607 5.6% 0.193   
0-50 40-60% < 15% 64 $6,400 $7,311 $911 $691 10.8% 0.136   

15-35 0-100% - 113 $11,300 $11,603 $303 -$7 -0.1% 0.330   
15-35 0-100% < 15% 67 $6,700 $7,481 $781 $592 8.8% 0.172   
15-35 10-90% - 108 $10,800 $10,980 $180 -$124 -1.1% 0.366   
15-35 10-90% < 15% 62 $6,200 $6,858 $658 $475 7.7% 0.198   
15-35 20-80% - 104 $10,400 $10,477 $77 -$222 -2.1% 0.409   
15-35 20-80% < 15% 58 $5,800 $6,352 $552 $374 6.5% 0.233   
15-35 30-70% - 89 $8,900 $8,409 -$491 -$751 -8.4% 0.564   
15-35 30-70% < 15% 49 $4,900 $5,099 $199 $44 0.9% 0.354   
15-35 40-60% - 69 $6,900 $5,869 -$1,031 -$1,215 -17.6% 0.774   
15-35 40-60% < 15% 39 $3,900 $3,996 $96 -$28 -0.7% 0.440   
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Table 7: Testing the Misestimated Probability of Victory Hypothesis (H3) – Initial Odds 
Adjustment, First ODI Innings 
This table shows the summary results from implementing a series of trading strategies on the first innings of ODI 
matches in our sample. An adjustment is made to account for the initial discrepancy in odds between the market and our 
model, as outlined in the main text. A hypothetical trade is placed when the discrepancy between the market implied 
probability of victory and the estimated probability of victory given by our model is greater than 10%.  Only one bet is 
placed per innings in any given match. Pr(win) represents the probability of victory implied by our model. Net $P/L is 
the profit after adjusting for the 5% commission charged by Betfair on the profit of each winning bet. The p-value 
represents the probability of obtaining a profit greater than or equal to the actual profit observed, assuming that the 
market odds represent the true probability of victory. ***, **, * indicate significance at the 1%, 5% and 10% levels, 
respectively.  

Overs pr(win) Initial 
Discrepancy 

Number   
of bets Total Bet Total 

Payoff 
Gross 
$P/L Net $P/L Return p-value 

 0-50  0-100% - 129    $12,900     $14,796  $1,896 $1,526 11.8% 0.0430 ** 

 0-50  0-100% < 15% 88      $8,800     $10,966  $2,166 $1,882 21.4% 0.0130 ** 

 0-50  10-90% - 119    $11,900     $13,567  $1,667 $1,309 11.0% 0.0799 * 

 0-50  10-90% < 15% 83      $8,300     $10,256  $1,956 $1,678 20.2% 0.0280 ** 

 0-50  20-80% - 113    $11,300     $13,011  $1,711 $1,355 12.0% 0.0460 ** 

 0-50  20-80% < 15% 79     $7,900       $9,857  $1,957 $1,684 21.3% 0.0300 ** 

 0-50  30-70% - 92      $9,200     $11,495  $2,295 $1,951 21.2% 0.0240 ** 

 0-50  30-70% < 15% 64      $6,400       $8,385  $1,985 $1,736 27.1% 0.0250 ** 

 0-50  40-60% - 73      $7,300     $10,269  $2,969 $2,651 36.3% 0.0040 *** 

 0-50  40-60% < 15% 52      $5,200       $7,303  $2,103 $1,883 36.2% 0.0110 ** 

 15-35  0-100% - 68      $6,800       $7,478  $678 $495 7.3% 0.1758   

 15-35  0-100% < 15% 45      $4,500       $5,357  $857 $724 16.1% 0.0799 * 

 15-35  10-90% - 61      $6,100       $6,753  $653 $476 7.8% 0.1868   

 15-35  10-90% < 15% 42      $4,200       $4,999  $799 $669 15.9% 0.1069   

 15-35  20-80% - 54      $5,400       $6,078  $678 $509 9.4% 0.1638   

 15-35  20-80% < 15% 38      $3,800       $4,587  $787 $663 17.4% 0.0949 * 

 15-35  30-70% - 48      $4,800       $5,495  $695 $535 11.2% 0.1838   

 15-35  30-70% < 15% 33      $3,300       $3,985  $685 $571 17.3% 0.1259   

 15-35  40-60% - 38      $3,800       $4,738  $938 $791 20.8% 0.1179   

 15-35  40-60% < 15% 26      $2,600      $3,345  $745 $643 24.7% 0.1009   
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Table 8: Testing the Misestimated Probability of Victory Hypothesis (H3) – No Odds 
Adjustment, Second ODI Innings 
This table shows the summary results from implementing a series of trading strategies on the second innings of ODI 
matches in our sample. No adjustment is made to account for the initial discrepancy in odds between the market and our 
model. A hypothetical trade is placed when the discrepancy between the market implied probability of victory and the 
estimated probability of victory given by our model is greater than 10%.  Only one bet is placed per innings in any given 
match. Pr(win) represents the probability of victory implied by our model. Net $P/L is the profit after adjusting for the 
5% commission charged by Betfair on the profit of each winning bet. The p-value represents the probability of obtaining 
a profit greater than or equal to the actual profit observed, assuming that the market odds represent the true probability of 
victory. ***, **, * indicate significance at the 1%, 5% and 10% levels, respectively.  

Overs pr(win) Initial 
Discrepancy 

Number   
of bets Total Bet Total 

Payoff 
Gross 
$P/L Net $P/L Return p-value 

 0-50  0-100% - 123 $12,300 $13,678 $1,378 $1,034 8.4% 0.122   

 0-50  0-100% < 15% 64 $6,400 $6,792 $392 $227 3.6% 0.246   

 0-50  10-90% - 118 $11,800 $13,199 $1,399 $1,059 9.0% 0.116   

 0-50  10-90% < 15% 62 $6,200 $6,712 $512 $347 5.6% 0.234   

 0-50  20-80% - 102 $10,200 $11,771 $1,571 $1,233 12.1% 0.127   

 0-50  20-80% < 15% 51 $5,100 $5,794 $694 $530 10.4% 0.186   

 0-50  30-70% - 89 $8,900 $10,348 $1,448 $1,131 12.7% 0.119   

 0-50  30-70% < 15% 42 $4,200 $4,922 $722 $571 13.6% 0.175   

 0-50  40-60% - 72 $7,200 $8,659 $1,459 $1,171 16.3% 0.115   

 0-50  40-60% < 15% 34 $3,400 $4,268 $868 $729 21.5% 0.143   

 15-35  0-100% - 89 $8,900 $10,981 $2,081 $1,807 20.3% 0.075 * 

 15-35  0-100% < 15% 43 $4,300 $5,669 $1,369 $1,225 28.5% 0.058 * 

 15-35  10-90% - 79 $7,900 $9,923 $2,023 $1,757 22.2% 0.075 * 

 15-35  10-90% < 15% 38 $3,800 $5,064 $1,264 $1,126 29.6% 0.063 * 

 15-35  20-80% - 65 $6,500 $8,631 $2,131 $1,874 28.8% 0.057 * 

 15-35  20-80% < 15% 29 $2,900 $4,157 $1,257 $1,130 39.0% 0.037 ** 

 15-35  30-70% - 52 $5,200 $6,448 $1,248 $1,041 20.0% 0.118   

 15-35  30-70% < 15% 23 $2,300 $3,355 $1,055 $943 41.0% 0.058 * 

 15-35  40-60% - 42 $4,200 $5,238 $1,038 $861 20.5% 0.115   

 15-35  40-60% < 15% 21 $2,100 $2,737 $637 $545 26.0% 0.130   
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Appendix 

A1. Brief Description of One-day Cricket 

Due to the complicated nature of one-day international cricket, only rules central to this paper 

will be explained.  A one-day international is contested between two teams of 11 players 

each.  The game is split into two main phases known as innings.  In each innings, the batting 

team is allotted 50 overs (each over consisting of 6 legal deliveries) and 10 wickets with 

which to score as many runs as possible.  When either 50 overs have been bowled or 10 

wickets have been lost, the innings is complete and the teams switch roles for the second 

innings.  Throughout this paper we will refer to the team that bats first as ‘Team 1’ and the 

other team as ‘Team 2’.  In an uninterrupted match, the winning team is the one that scores 

the most runs from their allotted 50 overs.  During each team’s batting innings the two most 

obvious resources they possess are the number of balls remaining and the number of wickets 

in hand. For a more complete list of rules, see http://www.icc-cricket.com/about/38/rules-

and-regulations 

 

A2. Betfair Example 

 

Figure A1:  Betfair User Interface  

 

http://www.icc-cricket.com/about/38/rules-and-regulations
http://www.icc-cricket.com/about/38/rules-and-regulations
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Figure A2:  Profit from back and lay bets 

 

Opposing bets are matched anonymously by Betfair with a commission being charged 

on the winning bet according the formula: 

Commission = Net Profit × 5% × (1 − Discount)  (A1) 

where discount represents a reduction in commission that increases with the number of 

Betfair points accrued.   
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